Search results for "homogeneous spaces"

showing 2 items of 2 documents

homogeneous embeddings of SL2(C) modulo a finite sub-group.

2000

L'objet de ce travail est l'étude des variétés algébriques normales complexes munies d'une action algébrique de $SL_{2}$ et qui contiennent $SL_{2}/H$ comme orbite ouverte, $H$ étant un sous-groupe fini de $SL_{2}$.Plus précisément on définit un plongement homogène de $SL_{2}/H$ comme la donnée d'une $SL_{2}$-variété irréductible $X$ (quasi-projective ou non) contenant $SL_{2}/H$ comme orbite ouverte et d'un morphisme $SL_{2}$-équivariant de $SL_{2}$ dans $X$.Les plongements homogènes lisses ainsi que les plongements minimaux (plongements lisses et complets qui ne sont pas des éclatements d'un autre plongement lisse complet) de $SL_{2}/\{Id\}$ et de $SL_{2}/\{\pm Id\}$ ont été déterminés pa…

group actionsreductive groupshomogeneous spacesGéométrie algébrique[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]groupes réductifsactions de groupesespaces homogènesalgebraic geometry
researchProduct

A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries

2017

AbstractCarnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.

Pure mathematicsmetric groupssub-finsler geometryengineering.material01 natural sciencesdifferentiaaligeometriasymbols.namesakesub-Finsler geometryMathematics::Metric Geometry0101 mathematics22f3014m17MathematicsPrimer (paint)QA299.6-433homogeneous groupshomogeneous spacesApplied Mathematics010102 general mathematics05 social sciencesryhmäteorianilpotent groupsCarnot groups; homogeneous groups; homogeneous spaces; metric groups; nilpotent groups; sub-Finsler geometry; sub-Riemannian geometry; Analysis; Geometry and Topology; Applied Mathematicssub-riemannian geometrysub-Riemannian geometry43a8053c17Carnot groupscarnot groupsengineeringsymbols22e25Geometry and Topology0509 other social sciences050904 information & library sciencesCarnot cycleAnalysisAnalysis and Geometry in Metric Spaces
researchProduct